On Boosting, Tug of War, and Lexicographic Programming
نویسندگان
چکیده
Despite the large amount of research effort dedicated to adapting boosting for imbalanced classification, boosting methods are yet to be satisfactorily immune to class imbalance, especially for multi-class problems, due to the long-standing reliance on expensive cost set tuning. We show that the assignment of weights to the component classifiers of a boosted ensemble can be thought of as a game of Tug of War between the classes in the margin space. We then demonstrate how this insight can be used to attain a good compromise between the rare and abundant classes without having to resort to cost set tuning, which has long been the norm for imbalanced classification. The solution is based on a lexicographic linear programming framework which requires two stages. Initially, class-specific component weight combinations are found so as to minimize a hinge loss individually for each of the classes. Subsequently, the final component weights are assigned so that the maximum deviation from the class-specific minimum loss values (obtained in the previous stage) is minimized. Hence, the proposal is not only restricted to two-class situations, but is also readily applicable to multi-class problems. We also derive the dual formulation corresponding to the proposed framework. Experiments conducted on artificial and realworld imbalanced datasets as well as challenging applications such as hyperspectral image classification and ImageNet classification establish the efficacy of the proposal.
منابع مشابه
Lexicographic goal programming approach for portfolio optimization
This paper will investigate the optimum portfolio for an investor, taking into account 5 criteria. The mean variance model of portfolio optimization that was introduced by Markowitz includes two objective functions; these two criteria, risk and return do not encompass all of the information about investment; information like annual dividends, S&P star ranking and return in later years which is ...
متن کاملUsing lexicographic parametric programming for identifying efficient hyperpalnes in DEA
This paper investigates a procedure for identifying all efficient hyperplanes of production possibility set (PPS). This procedure is based on a method which recommended by Pekka J. Korhonen[8]. He offered using of lexicographic parametric programming method for recognizing all efficient units in data envelopment analysis (DEA). In this paper we can find efficient hyperplanes, via using the para...
متن کاملOPTIMAL ANALYSIS AND DESIGN OF WATER DISTRIBUTION SYSTEMS USING TUG OF WAR OPTIMIZATION ALGORITHM
In this study, the recently developed method, Tug of War Optimization (TWO), is employed for simultaneous analysis, design and optimization of Water Distribution Systems (WDSs). In this method, analysis procedure is carried out using Tug of War Optimization algorithm. Design and cost optimization of WDSs are performed simultaneous with analysis process using an objective function in order to sa...
متن کاملA NOVEL META-HEURISTIC ALGORITHM: TUG OF WAR OPTIMIZATION
This paper presents a novel population-based meta-heuristic algorithm inspired by the game of tug of war. Utilizing a sport metaphor the algorithm, denoted as Tug of War Optimization (TWO), considers each candidate solution as a team participating in a series of rope pulling competitions. The teams exert pulling forces on each other...
متن کاملA goal geometric programming problem (G2P2) with logarithmic deviational variables and its applications on two industrial problems
A very useful multi-objective technique is goal programming. There are many methodologies of goal programming such as weighted goal programming, min-max goal programming, and lexicographic goal programming. In this paper, weighted goal programming is reformulated as goal programming with logarithmic deviation variables. Here, a comparison of the proposed method and goal programming with weighte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1708.09684 شماره
صفحات -
تاریخ انتشار 2017